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Dry friction avalanches: Experiment and theory
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Experimental evidence and theoretical models are presented supporting the conjecture that dry friction
stick-slip is described by self-organized criticality. We use the data, obtained with a pin-on-disk tribometer set
to measure lateral force, to examine the variation of the friction force as a function of time. We study nominally
flat surfaces of matching aluminum and steel. The probability distribution of force drops follows a negative
power law with exponents u in the range 3.2-3.5. The frequency power spectrum follows a 1/f® pattern with
« in the range 1-1.8. We first compare these experimental results with the well-known Robin Hood model of
self-organized criticality. We find good agreement between theory and experiment for the force-drop distribu-
tion but not for the power spectrum. We explain this on a physical basis and propose a model which takes
explicitly into account the stiffness and inertia of the tribometer. Specifically, we numerically solve the equa-
tion of motion of a block on a friction surface pulled by a spring and show that for certain spring constants the
motion is characterized by the same power law spectrum as in experiments. We propose a physical picture

relating the fluctuations of the force drops to the microscopic geometry of the surface.
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I. INTRODUCTION

There are experimental and theoretical studies suggesting
that certain far-from-equilibrium systems with many degrees
of freedom naturally organize in a critical state, releasing
energy through rapid relaxation events (avalanches) of dif-
ferent sizes, these sizes being distributed according to a
power-law probability density. Examples of such behavior
are found in earthquakes [1,2], biological systems [3], the
stock market [4], rainfall [5], and friction [6—8]. All these
phenomena share the features of the prototypical sandpile
model [9] for which the concepts of self-organized criticality
(SOC) were first proposed. Recently, the possibility of SOC
[10] in systems presenting stick-slip due to dry friction has
been under scrutiny [11]. Experimental evidence of SOC in
the stick-slip dynamics of two artificially constructed elastic
surfaces with macroscopic asperities was presented in Refs.
[12,13]. Slanina [6] presented theoretical attempts to explain
dry friction in terms of SOC. However, the central question
remains unanswered: to what extent is dry friction stick-slip
a manifestation of SOC? The clarification of this issue has
practical as well as fundamental implications. From the prac-
tical point of view, the power law exponents could be used as
parameters to characterize the friction of surfaces. From the
fundamental point of view, there is a growing interest to
understand systems driven far away from equilibrium from a
single unifying principle. Moreover, there is not yet a full
understanding of the dissipation mechanisms in friction. Par-
ticularly, an overall description of the topography of the in-
terface would be useful. In addition, there are claims that
avalanches should not exist in dry friction [2]. We believe
that the answer depends on experimental conditions. For ex-
ample, with an atomic force microscope where the contact
can be described reversibly, one would expect force drops
commensurate with the underlying lattice structures of the
tip and the sample. Indeed, there is experimental evidence
that that might be the correct picture for friction at that scale
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[14]. Another example corresponds to dry friction between
two surfaces with an intervening monolayer of a foreign ma-
terial. In that case, it is possible for the monolayer to sub-
stantially reduce the strength of the interaction between sur-
faces and thus eliminate avalanches altogether. Here, we
consider the interaction between two bare surfaces as
commonly used in macroscopic dry friction. The goal is to
clarify whether or not for these very general systems ava-
lanches exist, the extent to which SOC is a possible under-
lying mechanism, and to gain a physical understanding of the
critical state.

Friction is an extremely complex phenomenon, which in-
volves microscopic interactions between two surfaces, com-
prising elastic interactions, nonelastic shear stress dissipa-
tion, mass, and energy transfer [15—17]. There are a number
of models currently used to describe friction: (i) realistic ab-
initio models [ 18-28] based on molecular dynamics, (ii) sim-
plified models of motion of a single elastic tip in a periodic
atomic potential known as Tomlinson models [14,29-34],
(iii) models based on the driven elastic chain approximation
[35-37], and (iv) discrete models of extremal dynamics such
as the Slanina model [6].

With the fast increase of computational power, it has be-
come possible to study friction by molecular dynamics simu-
lations based on integrating Newton’s equation of motion of
atoms with classical approximations for interatomic interac-
tion potentials [19]. This approach has been also used for
studying scratching [20] and stick-slip motion of atomic
force microscope (AFM) tips [21]. The questions asked in
these studies cover fundamental problems of velocity, load,
and temperature dependence of the friction force, mecha-
nisms of energy dissipation [19,22], and asperity shear [23],
as well as applied problems of how a particular organic
monolayer coating [24,26] and hydrophobicity in the
presence of water vapor [27] affect friction. These studies
show that friction strongly depends on the commensurability
of surfaces and their smoothness, with totally different
mechanisms acting for rough surfaces (Coulomb law) and
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atomically smooth surfaces (Stokes law) [28]. They also sug-
gest that when friction does not involve wear, the stick-slip is
periodic and the distribution of the slip magnitude distribu-
tion is narrow [19], while in the presence of scratching and
irreversible atomic displacement [21] the behavior of the
friction force is chaotic and has a wide distribution [20].
Although these models are very useful for the understanding
of molecular mechanism of friction, they can model only
very small systems limited to a fraction of a micron in length
for a very short time intervals limited to a fraction of a mi-
crosecond. Obviously, macroscopic SOC behavior cannot
fully develop on such small spatial and temporal scales.

Another theoretical approach to study friction is based on
the Tomlinson model [14,29] which models the interaction
between a single sliding object (representing, for example,
an AFM tip) and a surface. The corresponding Newton equa-
tion is solved with a periodic potential intended to mimic the
periodic structure of crystalline lattices in contact and a sto-
chastic term modeling thermal activation. These models pre-
dict a relatively narrow Gaussian-like distribution of stick-
slip forces, which is confirmed in the AFM experiments [30].
They also predict a power-law [31] or logarithmic increase
of friction force with velocity [32,33] and vanishing of fric-
tion with temperature increase (thermolubricity)[34]. These
models are not suitable to study SOC in dry friction because
they have essentially one degree of freedom, which is the
coordinate of the sliding object.

Very promising models of dry friction which show the
evidence of SOC are the models based on a driven elastic
chain which interact with a surface via a disordered potential
consisting of randomly placed Gaussian bumps. In this
model the surface motion is represented by an overdump
motion of elastically coupled beads [35-37], connected by
springs to an object representing a tribometer arm moving
with a constant velocity along the surface. This model is one
dimensional and does not involve any mass transfer. At small
velocities, the distribution of the stick-slip drops, AF, is a
power law P(AF)~AF* with u=1.07, which is a typical
manifestation of SOC, which is in good agreement with the
experimental studies of the stick-slip dynamics of artificially
constructed elastic surfaces with macroscopic asperities
[7] which find 0.8 <x<2.0 depending on the interface ve-
locity. However, this value of w is far from our experimental
observations.

The driven elastic chain model is related to even simpler
one-dimensional lattice models of extremal dynamics such as
Zaitsev’s Robin Hood model and Bak-Sneppen evolution
model [38—40], which have similar power laws describing
the avalanche size distribution and other properties some of
which can be found analytically [41-43]. For this reason,
oversimplified lattice models of extremal dynamics are still
of value in understanding basic principles of friction in the
same spirit that two-dimensional Ising-type models are para-
digmatic in the studies of critical phenomena and phase tran-
sitions. In the extremal dynamics models, the distribution of
avalanches reaching certain threshold of a critical parameter
follows a power law with an exponent 7 slightly larger than
1. The main problem in applying these models to real phe-
nomena is relating their parameters to the real experimental
observables. For example, Slanina defined a critical variable
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analogous to Bak-Sneppen fitness or a merchant’s wealth in
the Robin Hood model to be the amount of elastic energy
accumulated in one asperity. However, the mapping of time
steps and spatial jumps in his interpretation to a real dynam-
ics remains problematic. He postulates that as the maximal
stress exceeds certain threshold the surface jumps to a new
location and the process of self-organization starts from the
very beginning. This postulate apparently leads to a narrow
stick-slip distribution, since the slip is always caused by al-
most the same amount of energy. On the other hand, he re-
lates the stick-slip distribution to the events within a self-
organization process, which seems to be inconsistent with his
postulate. In addition, the distribution of jumps in his inter-
pretation also decays as a power law with an exponent w
approximately equals to one.

Self-organized criticality is generally observed in systems
with many degrees of freedom in which the external stress
is slowly accumulating, while the system response takes
place on a much shorter time scale in an avalanche type
of activity during which a fraction of external stress is
released. Such systems with two dramatically different time
scales are usually called the extremal dynamics systems.
The simplest way to model such systems is to use lattice
models in the spirit of the invasion percolation [39],
the sandpile model [9], Bak-Sneppen evolution model [40],
and Zaitsev’s Robin Hood model [38]. The theory of
these models is rather well understood, and the behavior
of their variables is characterized by several power laws
with the exponents obeying well-established relations. As
we mentioned above, the largest challenge is to relate the
variables of the extremal dynamics models to the observ-
ables of the real dynamics. Once this relation is established
the exponents of the extremal dynamics model may be
compared with experiment.

For example, the exponent 7 characterizing the distribu-
tion of avalanche sizes is usually assumed to be related to the
exponent u characterizing the distribution of the drops of the
friction force. For example, in the sliding chain model [35]
in which the relation between the extremal and real dynamics
can be clearly established, an avalanche can be regarded as a
period of motion during which the maximum velocity of the
sliding beads exceeds the constant velocity of the driving
mechanism. Suppose that during such period of activity s
beads have been moving faster than the driving bar. Then the
total reduction of the friction force AF scales as AF
~ s(Ax), where Ax is an average displacement of the bead
during such fast motion, which is the typical distance be-
tween the Gaussian-shape asperities. Accordingly, the force
drop is proportional to the avalanche size s and the exponent
p must be identified with 7. In all known extremal dynamic
models (one and two dimensional) 7e[1,2] . Our experi-
mental results (Sec. IT) give u=3.4%0.5, so it is clear that the
equivalence between the avalanche size and the drop in the
friction force is not valid.

In this paper we propose another way of relating the pa-
rameters of an extremal dynamics model to the experimental
observables which yields a better agreement with the experi-
ment. Among several models of extremal dynamics one of
the simplest and most elegant is the Robin Hood model,
which was originally proposed for dislocation movement
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[38] and later was adopted for modeling dry friction [6] by
Slanina who added to the original Robin Hood model several
parameters aimed to better capture the dry friction mecha-
nism, but essentially obtained the same type of behavior as
the original model. Here we return to the original Robin
Hood model due to its simplicity.

In the present study, we consider statistical properties of
the force drop experimentally (Sec. II) and theoretically (Sec.
II0). In Sec. IV we discuss the possible relevance of the di-
mensionality and elasticity in a theoretical description of
friction models. In Sec. V we present the conclusions of our
experimental and theoretical studies.

First (Sec. IT), we present experimental results on stick-
slip in dry friction using a pin-on-disk tribometer, set to mea-
sure lateral forces. The probability distributions of force drop
sizes and the corresponding frequency power spectra for
matching aluminum and steel couples are examined for evi-
dence of SOC. Second (Sec. III), we attempt a theoretical
explanation of the observed power laws based on the Robin
Hood model [38] (Sec. IIT A in which we summarize previ-
ously known theoretical results and Sec. III B in which we
relate to dry friction). Third, we extend the previous model
(Sec. III C) to account for the finite stiffness and inertia of
the real tribometer as is done in Tomlinson model with the
difference that instead of periodic atomic forces we use
power-law-distributed forces generated by the extremal
dynamics mechanism as the microscopic input to the model.

The critical difference between our approach and that
taken in the elastic chain approximation is that our friction
mechanism is based on the assumption of nonelastic mass
transfer between the asperities which is not taken into ac-
count by the elastic chain model. In Sec. III B we describe
how we model the asperity interactions, using the critical
variable “wealth” to represent the local distance between the
surfaces rather than stress. Accordingly, we assume that ran-
dom redistribution of wealth between neighboring merchants
is equivalent to mass transfer. Thus our approach may be of
particular relevance in the studies of wear friction. Our ex-
tremal dynamics model produces the distribution of the mi-
croscopic force drops which agrees well with the our experi-
mental results. However, it fails to describe the spectral
features of the experimentally recorded time series of the
friction forces, which is not surprising since our extremal
dynamics model neglects inertia and stiffness of the real
macroscopic tribometer. That is why we explicitly introduce
the tribometer via its elastic constant and mass as in Tomlin-
son models (Sec. III C). This is the second feature which
distinguishes our work from previous attempts to model fric-
tion by extremal dynamics models. We use the nonelastic
asperity interaction taken from the Robin Hood model as a
noise-generating mechanism which serves as a microscopic
input into a macroscopic tribometer represented by a massive
object driven with constant velocity by an elastic spring as in
Tomlinson model. This approach represents a combination
between Robin Hood and Tomlinson models. We show that
the macroscopic output of the extended model retains the
power law distribution of the force drops but also reproduces
the spectral features of our experiments.
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FIG. 1. Pin-on-disk tribometer. The arrow points at the location
where the spherical pin and the disk touch. The disk lies horizon-
tally while the pin attached to the arm rests above it.

II. EXPERIMENT

The pin-on-disk tribometer used for these experiments is
shown in Fig. 1. This configuration was chosen because it
allows for easy replacement of the contacting surfaces and it
is the standard method for measuring friction and wear in
unlubricated and lubricated contacts. The apparatus uses a
2.54-cm-diameter disk and a spherical pin with a 0.95 cm
radius machined on its end. The pin is attached to a load arm
that is mounted on a gimbal supported at the center through
which a load applied at the end of the arm is transferred to
the contact zone. A strain gauge is mounted at the end of the
arm to monitor tangential friction force. The tangential force
is monitored at a sample rate of 1000 scans/sec, and conver-
sion is done using a 16-bit data acquisition card controlled
by LABVIEW. Data are recorded to a text file for later analy-
sis. Frictional force measurements are done on matching alu-
minum and steel (M50) pin-and-disk tribometers. The signal
is collected at 1 kHz during 16 min, thus collecting 10°
points. The first quarter of each data set, or about 4 min, is
discarded to assure that a steady state is reached. In order to
drive the system very slowly away from static equilibrium,
we select slow rotational speeds in the range 10—20 rpm.
Each disk is used for up to four tests by changing the radial
position of the pin on the disk. Loads for aluminum range
from 250 g to 1000 g. M50 steel is studied with a 1000-g
normal load between pin and disk. Figure 2 shows a typical
tangential friction force versus time trace. It shows force
drops of various sizes.

We first construct the probability distribution of force
drops. Force drops are taken as those events corresponding
to negative changes in the tangential force. We next obtain
the probability distributions of the tangential friction force
drops corresponding to aluminum on aluminum under vari-
ous loads and M50 on M50 steel. Results of such analysis
are presented in Figs. 3—6. We observe an approximate linear
behavior on the log-log plots suggesting a power law behav-
ior of the distributions P(AF)~AF* with exponents u
close to 3.

We also compute the power spectra of the tangential fric-
tion force time series. The power spectrum is, by definition,
the modulus squared of the Fourier transform of the original
time series. The power-law spectrum of a time series F(z)
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FIG. 2. Typical signal from the tribometer. The effective spring
constant of the apparatus is 1 g/um, giving the largest force drops
as a few hundred pm.

measured with equal time intervals At is defined as follows:

N N
S(f) — E F([k)eZwitkf/NE F(tj)e—Zﬂ-itjf/N ,

k=1 j=1

where 1, =ty,+kAz, N=2" determines the size of the observa-
tion window, and (---) denotes averaging over many
nonoverlapping windows starting at different positions #,. It
must be emphasized that in this equation F(z) represents
not the force drop or slide jump but the original force or
displacement.

We divide the original data (2'°) into 28 statistically inde-
pendent nonoverlapping data sets of N=2'! points each.
Next, we calculate 2% individual power spectra and finally
average them to obtain the resulting power spectrum. Spe-
cific double-logarithmic plots are shown in Figs. 7-10. The
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FIG. 3. Probability density for drop size distribution on steel
MS50.
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FIG. 4. Probability density for drop size distribution on alumi-
num with a normal load of 250 g.

power spectra follow power laws with exponents 1.0<a«
=< 1.8. The results of the probability distribution and power
spectra analysis are summarized in Table I.

III. THEORY
A. Classical Robin Hood model

The model consists of a d-dimensional lattice. Each site i
on this lattice at any time step n is characterized by the
height /;(n) which we assume to be the height of an atomic-
scale asperity at a given point of the interface between two
bodies in contact. Here we present the one-dimensional case,
which is an appropriate choice to model sliding friction but
the analytical treatment is the same in any dimension, al-
though the physically relevant cases are only d=1 and d=2.
As the bodies slide against each other, the asperity with the
maximal height is destroyed and some random number of
atoms from this asperity is distributed among the neighbor-
ing asperities. To be specific, at each time step the site m

Al
750g load

log,, P

w

log,,(AF)

FIG. 5. As in Fig. 4 with normal load of 750 g.
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FIG. 6. As in Fig. 4 with normal load of 1000 g.

0

with maximal height %,,(n) =max h,(n) is found and the new
heights are determined according to the following rule:
h,(n+1)=h,(n)-r(n) and h,. (n+1)=h,.(1n)+r(n)/2,
where r(n) are independent random variables uniformly
distributed between 0 and 1. [Robin Hood determines the
richest merchant in the market, robs him by a random
amount r(n), and distributes it equally among the neighbors
without leaving anything for himself.] If we assume periodic
boundary conditions so that the sites with i=0 and i=L are
equivalent, the total amount of matter == /,(n) is conserved
and we can assume it to be zero. The distance between the
surfaces at a given site i can be determined as h,,(n)—h;(n).

The particular details of the model such as the distribution
of r(n) or the rule of dividing it among neighbors can vary,
but the model still retains its SOC behavior. The critical ex-
ponents appear to be sensitive to the details of dividing r(n);
for example, an exactly solvable asymmetric model (in
which all the profit is given to the site on the left) [41]
belongs to a different universality class.

Steel M50

log,, S(/)

2 3 4

log,, f

FIG. 7. Power spectrum of the signal from the tribometer (force
time series) for a steel M50 sample.
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FIG. 8. Power spectrum of the signal from the tribometer (force
time series) for an aluminum sample with a normal load of 250 g.

It has been shown [42,43] that in a wide class of depin-
ning SOC models, all the critical exponents can be expressed
in terms of the two main exponents: avalanche dimension D
and correlation exponent v. The avalanche of threshold 7 is
defined as a sequence of time steps during which the height
of the maximal asperity is above hj. Namely, if h,,(ny) <h,
and h,,(ny+s) <hy while for no<n<ng+s, h,(n)>hg, the
sequence n=ng+1,...,ny+s is called a punctuating ava-
lanche of threshold %, and mass s. The avalanche dimension
describes how the avalanche mass s scales with the horizon-
tal dimension of the avalanche R. To be more precise, the
mass distribution of avalanches with threshold A scales as

Py(s) ~ s77g,(s(hg — he)P") (1)

and the distribution of the avalanche horizontal size R scales
as

Pg(R) ~ R Rgp(R(hy = h,)"), (2)

where h.~0.114 is the critical height,

Al
750g load

log,, S(f)

log,, /

FIG. 9. As in Fig. 8 with a normal load of 750 g.
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FIG. 10. As in Fig. 8 with a normal load of 1000 g.

7,=1+(d-1/v)/D, (3)
and
=1+d-1/v 4)

are Fisher exponents first introduced to characterize cluster
distributions in percolation theory [44], while g, and gg
are exponentially decreasing cutoff functions. It has been
suggested [45] that the Robin Hood model belongs to the
same universality class as the linear interface model, for
which the values (D=2.23 and 7,=1.13 in d=1, D=2.725
and 7,=1.29 in d=2) are given in Ref. [43]. Using these
values and Eq. (3), one gets v=1.41 for d=1 and v=0.83 for
d=2.

It can be shown that after the initial equilibration number
of time steps 7~ LP, any initial shape of the interface /,(0)
reaches a steady state such that very few N(L) “rich” sites
have h;(n)>h,~0.114, where

N(L) ~ L% (5)
and
dj=d—1/v (6)

plays the role of fractal dimension of rich sites. Only those
few rich sites have a chance to be robbed. The chance
P, (h,,) that at a given time step the maximal height is equal
to h,, decreases for an infinite system [42] as

TABLE I. The values of exponents u characterizing the power
law behavior of the distribution of the force-drop sizes and spectral
exponents « characterizing the power spectrum of the friction force
time series for different materials and loads.

Material Load (g) o a
M50 1000 3.5 1.8
Al 250 34 1.0
Al 750 3.5 1.5
Al 1000 3.2 1.3

PHYSICAL REVIEW E 74, 066110 (2006)

log,, L

FIG. 11. Double-logarithmic plot of the average equilibration
time (T) versus system size L=2%2%,...,2!2 The inset shows the
successive slopes of the main graph versus 1/L. The intercept
D=2.23 agrees with the data of Ref. [43].

Pm(hm) = (hm - hc)7_17 (7)
where the exponent
y=1+v(D-d) (8)

characterizes the dependence of the average avalanche size
on its threshold hg: {(s)~ (hy—h.)~?.

The distribution of heights of the poor sites converges to a
smooth distribution on the interval [h,.—1,h,], while the dis-
tribution of the rich sites converges to the distribution with a
power law singularity

Py(h) ~ (h=h)™ . )

This result is not presented in Refs. [42,43] but can be
justified by the following heuristic arguments. Indeed,
the number of sites with h>h, scales as the number of
the active sites in an avalanche of threshold h, and thus
scales as R%(h,), where R(h,) is the cutoff of the avalanche
distribution (2) which scales as

R(hy) ~ (hg—h.)™". (10)

Thus the probability that 4> h, scales as (hy—h,)™%" and the
probability density of h=h scales as

Py(hg) ~ (hg—h) ™" = (hg—h ). (11)

In order to illustrate these theoretical predictions, we per-
form simulations of the one dimensional Robin Hood model.
Starting at n=0 with a flat interface 4,(0)=0, electing the
first site to rob at random, after T steps we get all L sites of
the interface updated at least once. Measuring the average
(T) for many independent runs for different system sizes, and
plotting it versus L in a log-log scale (Fig. 11), we can obtain
the avalanche dimension D as the limit of the successive
slopes of this graph for L—o. In fact, the behavior
of the model does not depend on the initial condition. It
can be shown that for any values of /;(0) the system will
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0.0
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i

FIG. 12. A typical shape of the steady-state interface h;(n) for
n=(T). The horizontal axis i is the coordinate along the interface.
The vertical axis represents the normal coordinate of the relative
surface profile. The distance between the surfaces at each point is
assumed to be equal h,,—h;, where h,, is the maximal value of #;,
which for this particular realization (h,,=0.185) is reached for
i=2737. The horizontal line shows the critical height.

reach the critical state after the same average relaxation
time (T)~ LP. This critical state corresponds to the actual
topography of the interfaces during sliding.

A typical shape of the interface at time n>T is presented
in Fig. 12. One can see that the height of the majority of sites
does not exceed the critical value h.=0.114. Interestingly,
the majority of rich sites with heights above the critical
barrier are localized in the vicinity of the richest site.

Figure 13 shows the histogram of all the interface heights
P;,(h) collected over many time steps after the system has
reached the steady state and the histogram of the heights of
the robbed sites P,,(h,,). One can see that while Pj,(k) dra-
matically increases as h—h!, no sites below the critical
value are robbed and P,,(h,,) — 0 as h,,— h_. In order to find
the exponents governing the behavior of these distributions
near the critical point, we plot these quantities in a double-
logarithmic scale as functions of A—h, [Fig. 13(b)] and find
good agreement between their slopes and the exponents
predicted by the Egs. (9) and (7).

B. Relating the Robin Hood model to dry friction

Imagine the landscape of Fig. 12 to be a profile of one of
the interfaces (the bottom one) which touches the flat inter-
face at the top by its highest asperity. (In fact, we can assume
that both of the interfaces are rough and the distance between
the two interfaces at a given point i is given by &,,—h;.) As
the interfaces are moving against each other, %, fluctuates,
sometimes increasing and sometimes decreasing almost to
the critical value /.. When #,, is high, then only one asperity
creates a contact between the interfaces and the friction force
is small. If A, is close to h., many asperities are within the
range of atomic forces with the opposite interface and the
friction force is large. Thus, we assume that the friction force
F(n) at a given time step is proportional to the number
Py(h,,(n))Ah of asperities with heights between h,,(n)—Ah
and h,,(n):
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FIG. 13. (a) The semilogarithmic plot of the distribution of
heights Pj,(h) of all sites (solid line) and the distribution of heights
P, (h,,) of robbed sites (dashed bold line). The vertical dotted line
shows the position of the critical height h.=0.114. (b) Double-
logarithmic plot of the same quantities plotted as functions of
h—h.. The slopes of the curves in the fitted regions are in agreement
with Eq. (9), —dv=-1.4, and Eq. (7), v(D-1)=1.72.

F(n) =F1Ph(hm(n))Ah’ (12)

where A#h is the interaction distance of atomic forces acting
between the two surfaces and F is a proportionality coeffi-
cient, corresponding to the surfaces interaction force at
the asperity. Accordingly, the distribution of the friction
forces P(F) satisfies the equation P(F)dF=P,(h,)dh,,
where the random variables F and #,, are linked by Eq. (12).
Taking into account Egs. (9) and (12) we have dh,,/dF
~dF~ V| dF ~ F~Y4-1 Finally Eq. (7) yields

dh
P(F) = Py, (F)) 2~ 07D < e, (13)

where
w=(D+1/v)/d. (14)

Since the distribution of the difference between two power-
law-distributed random variables also has a power law tail,
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FIG. 14. Time series of F(r) for L=4096, Ah=2"10,

the distribution of the negative force drops AF scales as
AF~* with the same exponent .

For d=1, using values of Ref. [43] we have P(F)~F*
with ©=2.94 which is consistent with the experimental ob-
servations of the density of the force-drop sizes presented
here and in Ref. [46]. For d=2 we have u=1.96.

For the one-dimensional Robin Hood model we determine
the time series of forces, defined as the number of heights
between h,,(n) and h,,(n)—Ah as a function of time (Fig. 14).
The histogram of the negative force drops for this time series
is presented in Fig. 15 in a double-logarithmic scale. The
slope of this plot is —u=-3.0, which is consistent with the
theoretical prediction (14).

Note that the time series F(n) is slightly correlated, which
can be demonstrated by the negative slope of its power spec-
trum Syp(f) ~ /¢ in the log-log scale (Fig. 16). The explana-
tion of this phenomenon is based on the fact that the values
of h,,(n) fluctuate in the vicinity of 4, in a nontrivial way, so
that h,,(n) become less than h.+ € at time steps n separated
by intervals distributed according to Eq. (1). This is because

log,,P(AF)

log,,AF

FIG. 15. Distribution of forces drops, Pp(AF), for L=8192,
Ah=271° The slope of the straight-line fit is —u=-3.
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FIG. 16. Power spectrum of the time series F(r) presented in
Fig. 14. The slope of the straight-line fit is —a=-0.14.

these intervals coincide with avalanches for the threshold
ho=h.+ €. The values of h,,(n) below h, + € correspond to the
large values of forces F(n), and thus the intervals between
the forces F(n) above certain threshold are also distributed
according to Eq. (1). It can be shown [43,47] that the expo-
nent « of a time series generated by peaks separated by
intervals of zero signal distributed according to a power law
as in Eq. (1) is equal to 7,—1 for 1< 7,<<2. Thus, according
to Eq. (3), a=7,—1=(d—1/v)/D=0.13. Indeed, the numeri-
cal data of Fig. 16 give a=0.14, in a very good agreement
with the above theoretical prediction. However, this value of
the spectral exponent is much smaller than the values ob-
served experimentally which are in the range between 1.0
and 1.8.

This difference is to be expected since the materials in
contact as well as the strain gauge have finite elastic con-
stants and inertia which produce a time delay between the
applied force and the displacement recorded by the tribom-
eter and therefore lead to an effective integration of the input
force time series. If real materials were infinitely stiff, then
the experimental force power spectrum should agree with the
theoretical predictions. To compare with realistic situations,
we construct a mechanical model of a tribometer that
accounts for these effects.

C. Introducing the effects of the tribometer

As in the Tomlinson model [29], we assume that the pin
of the tribometer contacts the sample at time ¢ at a point with
coordinate x(¢) and it is dragged along the sample by the
strain gauge spring with constant k attached to the body of
the instrument moving along the sample with constant veloc-
ity vy, which is equivalent to the rotational speed of the disk.
The force measured by the tribometer is thus k[vyr—x(7)],
which fluctuates as the pin moves against the sample with
velocity v(f)=dx/dt and acceleration a(f)=d’x/dt*>. The
equation of motion of the pin is thus
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ma = (vt — x)k — F(t,0), (15)

where F(t,v) is the friction force generated by the asperities
of the sample and m is the mass of the pin. In the Tomlinson
model, F(¢,v) is the force created by the periodic potential
which models the atomic forces. In our case, it is created by
the random force F(n) created by many asperities distributed
across the sample as described in the previous section.

Now our goal is to relate F(¢,v) with the input from the
Robin Hood model F(n). Note that the physical time 7 is not
directly proportional to the time step n of the Robin Hood
model, but is equal to the sum of the durations of each time
step,

t=2t[, (16)

where the durations #; are the times needed for the pin to
travel a characteristic distance Ax, which is the linear size of
each asperity. It can be also related to the critical displace-
ment needed to destroy the highest asperity. We assume that
if the pin moves along the sample by Ax, the current asperity
is destroyed and the landscape of the contact between the pin
and the sample is rearranged according to the rules of the
model. Thus the time step n, of the Robin Hood model, cor-
responding to a given moment of time #, can be determined
as

n, = int[x(¢)/Ax], (17)

where int[...] denotes the integer part of the expression in
the brackets.

Once we know n, as a function of ¢ we can define F(z,v)
as

v=0,
v#0,
(18)

F B sgn(vor — x)min(bF(n,),k(vyt — x)),
()= sen(o)[bF(n) + 7],

where F(n,) is the input from the Robin Hood model,
and >0 is a dissipative constant. The constant » depends
on the elastic properties of the material. Introducing dimen-
sionless variables by x’=x/Ax and #’' =tv,/Ax, we arrive at a
dimensionless equation

a' =" -x"k'-F'(t',v"), (19)

where k’=kAx2/mv§ and F’(¢',v’") is the same as F(t,v)
but the constants b and 7 are changed by b'=bAx/ mv% and
7' =nAx/muv,.

Thus, there are three independent dimensionless param-
eters of the model: £, b', and 7’. Varying these parameters,
we found a wide region in the parameter space in which the
power spectrum of the model resembles the experimental
one. A typical example of the spectrum is shown in Fig. 17.
The frequency of the resonance peak is determined by
Vk'/27~5X1073. The peak becomes more pronounced as
we decrease 7'. The increase in %’ also increases the slope
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— S()
10" L —--—- slope -1.45

FIG. 17. Power spectrum of the time series produced by Eq.
(19) for k'=0.001, '=0.3, and 7' =0.01.

of the spectrum. The increase of b at given k" increases the
frequency region in which the power spectrum follows the
power law but it also increases the absolute value of the
slope closer to 2, a characteristic value of Brownian motion.
Interestingly, the large value of the spectral exponent found
for steel, can be associated with the larger strength of the
asperities which is modeled by the parameter b.

In general, an integration of the time series corresponds to
the increase of the spectral exponent by 2, so integration of
the white noise produces Brownian noise. The observed
spectral exponent a=1.45 suggests that in a certain range of
parameters, our model acts as the fractional integrator of the
input signal. For a very stiff spring and large dissipation
(k=1, b=0.1, »=1) the output signal of our equation is not
much different from the input time series F(n,) and we re-
cover the small value of the spectral exponent @=0.14. Note
that the parameters of the tribometer—inertia m, stiffness &,
load b, and dissipation 7—do not change the input to the
tribometer which is a power-law-distributed noise F(n). Thus
one can expect that the large force drops can be still visible
at the output of the tribometer, which cannot filter out large
and rare events. Figure 18 shows the distribution of the force

OP(AF)
—— slope -2.65

P(AF)

10”

10°

10

FIG. 18. Distribution of the measured force drops, Pr(AF), for
the tribometer model with £’ =0.001, b’=0.3, and %'=0.01.
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drops measured by the tribometer with the same parameters
as in Fig. 17. One can see that the distribution is still a power
law with the exponent w=3 as in the input time series
(Fig. 15). This is supported by the universal value w=3.4
found in experiments, which does not depend on the load and
material.

IV. DISCUSSION

In the previous section we have explored in detail an im-
proved version of the one-dimensional Robin-Hood model.
Friction is a two-dimensional phenomenon, and one can ar-
gue that the one-dimensional model is not sufficient to de-
scribe friction. That is why we also investigate the two-
dimensional Robin-Hood model, in which the mass taken
from the highest asperity is distributed equally among its
four neighbors. Using known values of the critical exponents
of the two-dimensional Zaitsev model [43] we predict the
value of the exponent n=1.96 describing the distribution of
the force drops.

Two surfaces in contact correspond to a two-dimensional
situation, but we have found that the d=1 case provides
better fit to the experimental results. We propose that
this might be due to a process of integrating out the degrees
of freedom perpendicular to the direction of the relative
motion. Specifically, one can view the quantity h(i) either
as an average (in the direction perpendicular to the motion)
of the corresponding h(i,j)—that is, h(i))=2;h(i,j)—or
h(i)=max; h(i, ).

Also, it is clear that one can expect a strong anisotropy in
mass redistribution due to the directionality of the motion
which is one dimensional. It is known that even in the one-
dimensional case the anisotropy of redistribution plays a sig-
nificant role and changes the critical exponents of the Robin
Hood model, giving w=2. These facts show that both dimen-
sionality and anisotropy may play a role in the values of the
exponent u and thus deserve a separate study which is be-
yond the scope of the present paper, the goal of which is to
propose a way of relating an extremal dynamics and friction
which involves wear.

The relationship between that force drop and the drop in
the number of asperities creating atomic contacts between
the sliding surfaces provides a direct mechanism of how the
creeping dynamics of Zaitsev’s model maps into a real dy-
namics. In fact the number of asperities which are respon-
sible for creating the adhesive forces between the interfaces
is not proportional to /,, but is a decreasing function of #,,,
reaching its maximum when #h, approaches the critical
threshold.

The power law distribution of force drops comes not from
the elastic interaction in the sliding chain as in the Lacombe
model, but from the fluctuation in the number of the asperi-
ties between the interfaces which creates a power law noise
microscopic input in the macroscopic mechanical model.
Thus, in our approach, the stiffness and inertia do not play
the explicit role in the formation of the avalanches as in the
Lacombe model. In our approach, they can only integrate
the effect of the microscopic power-law-distributed input.
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Indeed, as our simulations show, the power law distribution
of the large force drops remains intact in the vast region of
the parameter space. But we show that the stiffness and
inertia may significantly change the power law spectrum
behavior.

Although our model can explain the experimental results,
it is reasonable to question the absence of elasticity in our
interpretation of the extremal dynamics of the Robin Hood
model, which serves as a microscopic input to our model of
the tribometer. The Tomlinson-like model of the tribometer is
the only place in our approach where elasticity is taken into
account. As presented by Caroli and Nozieres [17], elasticity
is one among other mechanisms (adhesion, plastic flow of
asperities) relevant for friction. They show that despite its
long range, it plays a minor role in the solid friction of mul-
ticontact interfaces, like the situation we studied. Thus, al-
though present and relevant to friction in general, elasticity
plays a minor role in dry friction stick-slip.

V. CONCLUSIONS

We have presented experimental results and theoretical
arguments that support the presence of self-organized
criticality in dry sliding friction. The experiments are pin-on-
disk friction force traces of aluminum-aluminum and steel-
steel systems. In both cases and for a variety of normal loads,
the probability distribution of the friction force drops and
the frequency power spectra are power laws. The values of
the exponent w=3.4+0.5 is much larger than the value ob-
tained in Ref. [12] for artificially constructed elastic inter-
faces. In addition, the force-drop and power-spectrum expo-
nents are load independent. Although further studies
including a larger range of loads and materials are necessary,
these results suggest the interesting possibility of universal
exponents.

The theoretical arguments are based on the application
of the Robin Hood model to the friction problem. This model
provides rules by which the surface profile changes as a
function of time (Sec. III B). The model introduces a height
h that we interpret physically as the height of the asperity.
At each time step, atoms from the highest asperity are dis-
tributed among neighboring sites. We use the known distri-
bution of heights and of maximal heights #,, of the Robin
Hood model to obtain the time series of the friction forces
created by the asperities. As the maximum height fluctuates
near the critical value, the number of smaller asperities
whose heights are within the reach of atomic forces also
fluctuates, diverging as h,, comes close to the critical value
h.. These smaller asperities correspond to the contact sites
and are responsible for the friction force. Specifically, the
friction force is proportional to the number of contacts. Thus
we propose that the friction force at a given time step is
proportional to the probability density of the interface
heights at the current value of the maximal height. The sta-
tistical distribution of the friction forces is studied both
numerically and analytically.

We also find that the large forces are bunched in time.
This is due to fluctuations of the maximal heights above a
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constant critical height. When the maximum heights return to
the critical value, the forces become large. Thus, the surface
waxes and wanes between a situation of large force due to
many asperities acting and a situation of smaller force in
which only few asperities are in contact.

In addition, we use the time series of forces as an input to
the Newton’s equation which describes the kinematics of the
pin (Sec. III C). For stiff or massless materials, the experi-
mental distribution of force drops should coincide with the
theoretical distribution of forces. However, materials have
finite mass and elasticity and thus the experimentally mea-
sured friction forces differ from the actual forces at the con-
tact. To investigate these effects, we solve this equation nu-
merically for different values of the parameters and find
good agreement with the experiment.

Extremal dynamics models (such as the Robin Hood
model utilized in this work) are more than a decade old and
could be seen as primitive. However, we believe that they
still have an underutilized potential for understanding
friction. In fact the only alternative approach to them is
the elastic chain model, which is essentially one dimensional

PHYSICAL REVIEW E 74, 066110 (2006)

and can be mapped onto an extremal dynamics model in
the limit of slow driving velocity. The elastic-chain model
emphasizes the elastic interactions between the elements
of the sliding interface, assuming some interaction potential
with randomly distributed asperities. Our interpretation
of the Robin Hood model emphasizes the nonelastic friction
which involves wear and mass transfer between the
neighboring asperities. The difference in the predictions
of these two approaches regarding the force-drop distribution
exponent u must be further tested experimentally in the
absence and presence of wear.
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